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Abstract

Stochastic and deterministic subgrid-scale parameterisations
are developed for the large eddy simulation (LES) of oceanic
flows. Parameterisations are developed for a flow representative
of the Antarctic Circumpolar Current (ACC), generated using
a spectral quasi-geostrophic code. The subgrid eddy viscosity
coefficients are calculated using the approach of [3], whereby
a high resolution reference direct numerical simulation (DNS)
is truncated back to theLES truncation wavenumberTR. Two
subgrid parameterisations are produced: isotropic, in which the
coefficients are only dependent on the total wavenumber (n);
and anisotropic, in which the coefficients are also dependent on
zonal wavenumbers (m). TheseLES variants reproduce the ki-
netic energy spectra of theDNS at various resolutions. Scaling
laws are determined representing the isotropic profiles, which
make the parameterisations more generally applicable, as they
remove the need for a higher resolution reference simulation.

Introduction

In geophysical flows it is not possible to resolve all of the
scales of motion. Instead one must resort toLES, where the
large eddies are resolved by a computational grid, and the
unresolved subgrid interactions are parameterised. In three-
dimensional turbulence the empirical subgrid model of [9] is
typically adopted, where the contribution of the subgrid scales
to the evolution of the resolved field is parameterised by an eddy
viscosity. Here the eddy viscosity is given by a specified con-
stant multiplied by a measure of the local grid size and the re-
solved strain rate. In simulations of two-dimensional and quasi-
geostrophic (QG) turbulence, is it more appropriate for the eddy
viscosity to be steeper in spectral space, taking the form ofthe
Laplacian raised to a certain specified power. Regardless ofthe
method, if the subgrid interactions are not parameterised prop-
erly, an increase in resolution will not necessarily increase the
accuracy of the explicitly resolved scales, as illustratedin [7].
This dependence of the resolved planetary and synoptic scales
on resolution has been an issue in general circulation models
since the earliest geophysical simulations, and persists today in
even the most sophisticated codes.

This resolution dependence problem was addressed in [2], by
using renormalisation closure theory to develop stochastic sub-
grid parameterisations forQG turbulence. The parameterisa-
tions consist of a drain eddy viscosity and stochastic backscat-
ter, and produced resolution independentLES. Broadening the
applicability of the method to more complex flows, [3] devel-
oped a means of determining the subgrid parameterisation co-
efficients from the statistics of a higher resolution referenceDNS

coarsened to the desiredLES resolution. Note the termDNS in
the present context is taken to mean a high resolution reference
simulation, not one that necessarily explicitly resolves all scales
of motion. This approach was successfully applied toQG simu-
lations of the atmosphere and ocean, comprising of sheared jets,
Rossby waves, and baroclinic instability in [10, 11]. It wasthen
shown in [5] that within certain regimes of the atmosphere, scal-

ing laws exist that govern how the parameterisation coefficients
change with resolution. These scaling laws enable the parame-
terisations to be more generally applicable and remove the need
to generate the subgrid coefficients from aDNS. The aim of the
present paper is to produce such scaling laws for oceanic flows.

The paper is organised as follows. Firstly we summarise theQG

potential vorticity equation (QGPVE), and present the resulting
DNS flow fields and spectra. TheLES version of theQGPVE is
then outlined, along with the details on how the subgrid coef-
ficients are determined from theDNS. The subgrid coefficients
are then illustrated. A comparison is then made between the
kinetic energy spectra from theDNS and variousLES.

Quasi-geostrophic DNS spectral equations

We employ the two-levelQG model of [1], which captures the
essential dynamics of baroclinic and barotropic instabilities.
The vorticity is represented at two vertical levels, withj = 1
representing a depth of approximately 200m, andj = 2 a depth
of 600m. The system is non-dimensionalised by using the ra-
dius of the Earth (a = 6371km) as a length scale, and the in-
verse of the Earth’s angular velocity (Ω = 7.292×10−5s-1) as
a time scale. By default all variables are assumed to be non-
dimensional unless units are specified.

The QGPVE is spectrally discretised by expanding the field
variables in spherical harmonics with the zonal (longitudinal)
wavenumberm, and the total wavenumbern. This results in
the prognostic equations for the spectral coefficients of the po-
tential vorticity, q j

mn = ζ j
mn + (−1) jFL[ψ1

mn −ψ2
mn] where the

superscript j on the flow variables denotes the level,ζ j
mn =

−n(n+1)ψ j
mn are the spectral coefficients of the vorticity,ψ j

mn
the streamfunction coefficients, andn(n+1) is the discrete form
of the Laplacian. HereFL is a layer coupling parameter, related
to the Rossby radius of deformation byrR = 1/

√
2FL. The evo-

lution equation forq j
mn is given by

∂q j
mn

∂t
= i∑

pq
∑
rs

Kmpr
nqs ψ j

−pqq j
−rs − iωmnζ j

mn −α j(n)ζ j
mn

+ κn(q̃
j
mn −q j

mn)−n(n+1)
2

∑
l=1

ν jl
0 (m,n)ql

mn , (1)

where the summations immediately after the equals sign are
over the triangular wavenumber setT = C(T ), with T the DNS

truncation wavenumber, and

C(T ) = [ p,q,r,s |−T ≤ p ≤ T , |p| ≤ q ≤ T ,

−T ≤ r ≤ T , |r| ≤ s ≤ T ] . (2)

The Rossby wave frequency isωmn = −Bm/[n(n + 1)], where
B = 2 with the chosen non-dimensionalisation. The drag at each
level isα j(n) = α j

max[1−erf(0.1(n−50))]/2, where erf is the
error function, and the damping times (1/α j

max) are 40 days for
level 1 and 10 days for level 2. The interaction coefficientsKmpr

nqs
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Figure 1:DNSflow field: (a) Level 1 instantaneous eddy (non-zonal) streamfunction field (ψ1), with contours black=−1.4×10−6m2s-1

and white= 1.4×10−6m2s-1; (b) time averaged zonal current (u j); and (c) mean (¯e j) and fluctuating ( ˆe j) kinetic energy spectra.

are detailed in [3]. All simulations are driven toward a mean
state ˜q j

mn, that is purely zonal ( ˜q j
mn are zero unlessm = 0) and

corresponds to a large-scale easterly current in the mid-latitudes
of the southern hemisphere, mimicking theACC. The simula-
tions are driven toward this state by a relaxation parameterκn,
which for m = 0 andn ≤ 15 has a relaxation time (1/κn) of
11.6 days, andκn = 0 for all remaining wavenumber pairs. The
bare eddy viscosityν jl

0 (m,n), is necessary as theDNS does not

resolve all of the scales of motion. We representν jl
0 (m,n) in

its general anisotropic matrix form (dependent onm andn) but
in our simulations it is isotropic (dependent only onn) where

ν jl
0 (m,n) = ν jl

0 (n) = δl j ν j j
0 (T ) [n/T ]ρ

j
0−2, andδl j is the Kro-

necker delta function, ensuring the off-diagonal elementsare
zero. Hereν j j

0 (T ) is the value of the diagonal elements at trun-

cation and the exponentρ j
0 determines the steepness ofν j j

0 (n).

DNS flow fields and spectra

DNS of a QG ocean is undertaken withFL = 2.5× 10−10m-2,
corresponding to a Rossby radius ofrR = 1/

√
2FL = 45km.

The nondimensional Rossby wavenumber iskR = a/rR = 142,
which is consistent with the simulations of [11]. The following
DNS has truncation wavenumber ofT = 504, which is equiva-
lent to 1536×768 grid points (in longitude× latitude), or a grid
point every 0.234 degrees. The time step size used is∆t = 600s,
and the statistics are accumulated over a period of 6 years. Re-
call DNS in this context refers to a high resolution reference sim-
ulation, not one that necessarily explicitly resolves all scales of
motion. Strictly speaking what is referred to as aDNS in the
present paper is a high resolution referenceLES.

A snapshot of the level 1 instantaneous streamfunction field
(ψ1) minus the zonal component is shown in Fig. 1(a), which
illustrates that the dominant structures are located in themid to
high latitudes of the southern hemisphere, consistent withthe
ACC. The corresponding time averaged zonal current (u j) is
shown as a function of latitude in Fig. 1(b). The maximum ve-
locity of the current depths of 200m and 600m, are≈ 0.6ms-1

and≈ 0.3ms-1 respectively; consistent with measurements of
theACC [8].

The kinetic energy spectra (e j) is decomposed into mean (¯e j)
and transient ( ˆe j) energies. Figure 1(c) illustrates that the level 1
energy is greater than level 2 at all wavenumbers. The en-
ergy containing scales wavenumberkE ≈ 70 is defined as the
wavenumber at which self similar inertial range begins, andis
labelled on then axis of 1(c) along with the Rossby wavenum-
ber kR. The enstrophy flux (η j) is the rate at which enstrophy
(vorticity squared) is transferred from one wavenumber to the
next. On each levelj within the inertial rangeη j is constant,
with η1 = 1.88×10−16s-3 andη2 = 1.36×10−16s-3. The eddy

viscosity on levelj is proportional toη1/3
j [6].

Stochastic modelling of subgrid scales

The stochastic modelling approach of [3] is used to parame-
terise the subgrid interactions. The resolution of aLES is lower
than the associatedDNS, and confined to the resolved scale
wavenumber setR = C(TR), whereTR is the LES truncation
wavenumber such thatTR < T . The subgrid wavenumber set
is defined asS = T−R. To facilitate a discussion on the flow
decomposition, we letq = (q1

mn,q
2
mn)

T for a given wavenum-
ber pair. In this vector notationqt(t) = qR

t (t) + qS
t (t), where

qt is the tendency (time derivative) ofq. The tendency of
the resolved scales isqR

t , where all triadic interactions involve
wavenumbers less thanTR. The remaining subgrid tendencyqS

t
has at least one wavenumber greater thanTR which is involved
in the triadic interactions.qS

t is further decomposed such that

qS
t (t) = f + q̂S

t (t), wheref ≡ qS
t is the time averaged subgrid

tendency, and̂qS
t the fluctuating component. The values off are

determined from theDNS, andq̂S
t is modelled as follows.

The q̂S
t is represented by the stochastic equation

q̂S
t (t) = −Dd q̂(t)+ f̂(t) , (3)

whereDd is the subgrid drain dissipation matrix,q̂ is the fluctu-
ating component ofq, and̂f is a random forcing vector. As the
present simulations have two vertical levels,Dd is a time inde-
pendent 2×2 matrix, and̂f is a time dependent 2 element col-
umn vector. TheDd matrix is determined by post-multiplying
both sides of (3) bŷq†(t0), integrating over the turbulent decor-
relation periodτ, ensemble averaging to remove the contribu-
tion of f̂, and rearranging to produce

Dd = −
〈

Z t0+τ

t0
q̂S

t (σ)q̂†(t0)dσ
〉 〈

Z t0+τ

t0
q̂(σ)q̂†(t0)dσ

〉−1

, (4)

where † denotes the Hermitian conjugate for vectors and ma-
trices. The angled brackets denote ensemble averaging, with
each ensemble member determined by shiftingt0 forward by
one time step. The turbulence decorrelation timeτ, is chosen
sufficiently large to capture the turbulent memory effects.

The model for̂f is determined by calculating the matrixF bbb =

Fb +Fb
†, whereFb = 〈̂f(t) q̂†(t)〉. Post-multiplying both sides

of (3) by q̂†(t0), and adding the conjugate transpose of (3) pre-
multiplied by q̂(t0) yields the Lyapunov equation

〈
q̂S

t (t)q̂†(t)
〉

+
〈

q̂(t)q̂S†
t (t)

〉
=

−Dd

〈
q̂(t)q̂†(t)

〉
−

〈
q̂(t)q̂†(t)

〉
Dd

† + F bbb . (5)
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Figure 2: Drain eddy viscosity: (a) anisotropic coefficients Re[D11
d (m,n)] for TR = 252; (b) isotropic coefficientsRe[D11

d (n)] for

TR = 63,100,126,150,200,252,300; and (c) maximum valuesν j j
net(TR) and power exponentsρ j.

Given thatDd is known, F bbb can now be calculated. At this
point the formulation is general, and̂f is coloured noise. For
the implementation of the stochastic subgrid parameterisation,
however, it is sufficient to assume thatf̂ can be represented as
the white noise process〈̂f(t) f̂†(t ′)〉 = F bbb δ(t − t ′).

The subgrid model in (3) represents the subgrid interactions
in a stochastic manner. One can also do so deterministically,
where the subgrid tendency is modelled according toq̂S

t (t) =
−Dnet q̂(t), with the net dissipationDnet = Dd + Db, and the

backscatter dissipationDb = −Fb
〈
q̂(t) q̂†(t)

〉−1
.

The equation governing theLES is the same as theDNS equation

in (1), with
(
qS

t
) j

mn added to the right-hand-side, and solved
over the wavenumber setR instead ofT. The most general
form is the stochastic anisotropic representation

(
qS

t

) j

mn
= −

2

∑
l=1

D jl
d (m,n)q̂l

mn + f̂ j
mn + f̄ j

mn . (6)

In the anisotropic deterministic form,D jl
d (m,n) is replaced with

D jl
net(m,n), and f̂ j

mn is removed. In the isotropic parameteri-
sations the matricesDd, F bbb and Dnet are isotropised. From
this point onwards the subgrid coefficients are presented in
eddy viscosity form, where the drain, backscatter and net eddy
viscosities are related to their respective dissipations by νννd ≡
Dd/[n(n+1)], νννb ≡ Db/[n(n+1)], andνννnet ≡ Dnet/[n(n+1)].

Subgrid eddy viscosities and scaling laws

TheDNS is truncated back to various values ofTR to determine
how the eddy viscosities change with resolution. We choseννν0
to be consistent with it having been derived from a higher res-
olution DNS. Firstly we present the anisotropicνννd truncated
back toTR = 252, withτ = 288∆t = 2 days. The real compo-
nent of the upper diagonalν11

d (m,n) is illustrated in Fig. 2(a).
At this resolutionν11

d (m,n) increases withn, has only a weak
dependence onm, and hence is approximately isotropic. The
lower diagonal elementν22

d (m,n) has a similar form, and the
off-diagonal elements are small in comparison. These observa-
tions are also true for the backscatter and net eddy viscosities.
We also find thatνννd ≈ νννnet/2 ≈ −νννb/2. At lower truncation
levels, however, the coefficients become more anisotropic,and
the off-diagonal elements become proportionally more impor-
tant.

Self similarity is most clearly illustrated by the isotropised pro-
files. The real component of the upper diagonal isotropised
drain eddy viscosityν11

d (n) is illustrated in Fig. 2(b) for vari-
ous truncation levels. It is clear that as the resolution increases
the maximum value decreases, and the most negative value ap-

proaches zero. For truncations withTR > kE the positive values
of the eddy viscosities are concentrated in the lastkE wavenum-
bers before truncation. This means that when plotted versus
n/TR the profiles become steeper as resolution increases.

For the isotropised drain eddy viscosity, the change in magni-
tude (ν j j

d (TR)) and slope (ρ j
d) is quantified by least squares fit-

ting theν j j
d (n) profiles to the function

ν j j
d (n) = ν j j

d (TR) [n/TR]ρ
j
d−2 . (7)

There are analogous expressions of (7) forν j j
b (n) andν j j

net(n).

Note the form ofν j j
d (n) prescribed in (7) is positive definite.

The values ofν j j
d (TR) non-dimensionalised byη−1/3

j k2
E , are

plotted as diamonds on the left vertical axis in Fig. 2(c) against
TR/kE . The values ofρ j

d are plotted as circles on the right ver-
tical axis in Fig. 2(c). The filled symbols representj = 1, and
the open symbolsj = 2. There are two additional truncations
plotted in in Fig. 2(c) made atTR = 400 and 504, determined
from aDNS with T = 1008. The data in Fig. 2(c) illustrates that
as TR increases (more scales resolved), the strength,ν j j

d (TR),

decreases and the steepness,ρ j
d , increases.

The trend lines in Fig. 2(c) are fitted to data points for which
TR/kE > 2, as this ensures that these data points have mini-
mal subgrid interactions with the energy containing scales. The
functional form of these trend lines are the eddy viscosity scal-
ing laws and are explicitly outlined in [4]. Trend lines alsoexist
for the eddy viscosities in baroclinic space. We can also de-
termine the off-diagonal elements from these scaling laws as
explicitly outlined in [4].

Performance of LES with subgrid scale parameterisations

We compare kinetic energy spectra at level 1 (e1) of the DNS,
to e1 of variousLES at two truncation levelsTR = 126 and 252.
Observations made from the comparison ofe1 are consistent
with comparisons of the level 2 spectra (e2).

Firstly we testLESs with the raw anisotropic coefficients de-
termined from theDNS. We compare both the stochastic and
deterministicLES in Fig. 3(a), with each spectra offset for clar-
ity. Whilst the stochastic parameterisation is the fundamental
form [2], for the present flow configuration we find that the de-
terministic variant performs equally as well. The deterministic
and stochastic parameterisations illustrate excellent agreement
for bothLES truncationsTR = 126 and 252.

Next we test the isotropic parameterisations using the raw co-
efficients. In Fig. 3(b) we compare theDNS to the stochastic
and deterministic isotropicLES, both of which achieve excel-
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Figure 3: Spectrae1 (DNS - dashed,LES - solid) using parameterisations: (a) anisotropic deterministic (AD), stochastic (AS); (b)
isotropic deterministic (ID), stochastic (IS); (c) scaling laws deterministic (LD), stochastic (LS). Labelled withTR and parameterisation.

lent agreement atTR = 126 and 252.

Finally we testLESs adopting isotropic subgrid parameterisa-
tions with coefficients defined by (7) and the scaling laws il-
lustrated in Fig. 2(b). The spectra are compared in Fig. 3(c).
Excellent agreement is achieved by both the deterministic and
stochastic variants for truncations made atTR = 252. At this res-
olution the baroclinic instability is explicitly resolved(TR > kR),
andν j j

d (n) is positive definite (see Fig. 2(b)). By construction,
the form representing these profiles in (7) can only be positive,
which is adequate forTR = 252. At theTR = 126 truncation
level, however, the baroclinic instability is not completely re-
solved (TR < kR), ν j j

d (n) is in fact negative for certainn (see
Fig. 2(b)), and consequently the form in (7) does not represent
these negative values. This is why the kinetic energy spectra is
underestimated for both variants atTR = 126. At this resolution
some amount of negative eddy viscosity is required to further
excite theLES in order to replicate theDNS spectra.

Concluding remarks

Deterministic and stochastic subgrid parameterisations have
been developed for oceanic flows representative of theACC.
The stochastic variant consists of a drain eddy viscosity, and
a backscatter noise term. The deterministic version is governed
solely by the net eddy viscosity, which represents the net ef-
fect of the drain and backscatter. These wavenumber depen-
dent eddy viscosity matrices have been derived self-consistently
from the statistics of higher resolutionDNS.

We have undertaken variousLESs with subgrid coefficients de-
termined from theDNS. The anisotropic deterministic and
stochastic parameterisations reproduce theDNS spectra atTR =
126 and 252. Both the deterministic and stochastic isotropic pa-
rameterisations using raw coefficients also reproduce the spec-
tra within the inertial range. Isotropic variants with coefficients
determined by the scaling laws also adequately reproduce the
kinetic energy spectra of theDNS.

To further improve the applicability of these scaling laws,cur-
rent research is investigating how they may change with Rossby
radius. In the future we also hope to further verify these scal-
ing laws by applying the present subgrid modelling approachto
more complex mutli-level primitive equation models incorpo-
rating more complete dynamics and physics.
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