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Abstract

Stochastic and deterministic subgrid-scale parametinisa
are developed for the large eddy simulatiae$) of oceanic
flows. Parameterisations are developed for a flow repremsanta
of the Antarctic Circumpolar Curren\€C), generated using
a spectral quasi-geostrophic code. The subgrid eddy vtgcos
coefficients are calculated using the approach of [3], where
a high resolution reference direct numerical simulatipng)

is truncated back to thees truncation wavenumbefr. Two
subgrid parameterisations are produced: isotropic, irckvtiie
coefficients are only dependent on the total wavenumbgr (
and anisotropic, in which the coefficients are also depenaten
zonal wavenumbersr(). TheseLES variants reproduce the ki-
netic energy spectra of thens at various resolutions. Scaling
laws are determined representing the isotropic profileschwh
make the parameterisations more generally applicabldeys t
remove the need for a higher resolution reference simulatio

Introduction

In geophysical flows it is not possible to resolve all of the
scales of motion. Instead one must resort&s, where the
large eddies are resolved by a computational grid, and the
unresolved subgrid interactions are parameterised. kethr
dimensional turbulence the empirical subgrid model of [9] i
typically adopted, where the contribution of the subgridlss

to the evolution of the resolved field is parameterised bydaly e
viscosity. Here the eddy viscosity is given by a specified-con
stant multiplied by a measure of the local grid size and the re
solved strain rate. In simulations of two-dimensional andsi-
geostrophic ©G) turbulence, is it more appropriate for the eddy
viscosity to be steeper in spectral space, taking the fortheof
Laplacian raised to a certain specified power. Regardleizeof
method, if the subgrid interactions are not parameterised-p
erly, an increase in resolution will not necessarily inseethe
accuracy of the explicitly resolved scales, as illustratef¥].
This dependence of the resolved planetary and synoptiescal
on resolution has been an issue in general circulation reodel
since the earliest geophysical simulations, and persidesytin
even the most sophisticated codes.

This resolution dependence problem was addressed in [2], by
using renormalisation closure theory to develop stochasi-

grid parameterisations fopG turbulence. The parameterisa-
tions consist of a drain eddy viscosity and stochastic hatks
ter, and produced resolution independers. Broadening the
applicability of the method to more complex flows, [3] devel-
oped a means of determining the subgrid parameterisation co
efficients from the statistics of a higher resolution refieebNs
coarsened to the desire@s resolution. Note the terrdns in

the present context is taken to mean a high resolution mfere
simulation, not one that necessarily explicitly resolMéseales

of motion. This approach was successfully applie@tsimu-
lations of the atmosphere and ocean, comprising of sheetgd |
Rossby waves, and baroclinic instability in [10, 11]. It vilasn
shown in [5] that within certain regimes of the atmosphecal-s

ing laws exist that govern how the parameterisation coefiisi
change with resolution. These scaling laws enable the param
terisations to be more generally applicable and removeekd n
to generate the subgrid coefficients frornms. The aim of the
present paper is to produce such scaling laws for oceanis flow

The paper is organised as follows. Firstly we summaris@the
potential vorticity equationdGrPVE), and present the resulting
DNSs flow fields and spectra. Thees version of theQGPVEis

then outlined, along with the details on how the subgrid coef
ficients are determined from tlens. The subgrid coefficients
are then illustrated. A comparison is then made between the
kinetic energy spectra from thens and varioud ES.

Quasi-geostrophic DNS spectral equations

We employ the two-leveyG model of [1], which captures the
essential dynamics of baroclinic and barotropic instiédi

The vorticity is represented at two vertical levels, wijth= 1
representing a depth of approximately 200m, ard2 a depth

of 600m. The system is non-dimensionalised by using the ra-
dius of the Earthd = 6371km) as a length scale, and the in-
verse of the Earth’s angular velocitQ (= 7.292x 10-°s1) as

a time scale. By default all variables are assumed to be non-
dimensional unless units are specified.

The QGPVE is spectrally discretised by expanding the field
variables in spherical harmonics with the zonal (longitadii
wavenumbem, and the total wavenumber. This results in
the prognostic equations for the spectral coefficients efutb
tential vorticity, gin = Zlm + (= 1) 1R [Wl,, — W2,,] where the
superscriptj on the flow variables denotes the levéhn =
—n(n+1)Wim are the spectral coefficients of the vorticitym
the streamfunction coefficients, anth+ 1) is the discrete form
of the Laplacian. Her€&_ is a layer coupling parameter, related
to the Rossby radius of deformation hy= 1//2F_. The evo-

lution equation fol is given by
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where the summations immediately after the equals sign are
over the triangular wavenumber Set= C(T), with T theDNS
truncation wavenumber, and

C(M) = [pars|-T<p<T,[p/<q<T,
—T<r<T,|r|<s<T]. (2
The Rossby wave frequency 4gm = —Bm/[n(n+ 1)], where
B = 2 with the chosen non-dimensionalisation. The drag at each
level isal(n) = afax[1— erf(0.1(n— 50))]/2, where erf is the
error function, and the damping times/(liax) are 40 days for
level 1 and 10 days for level 2. The interaction coeffici
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Figure 1:Dnsflow field: (a) Level 1 instantaneous eddy (non-zonal) stieastion field (3*), with contours black —1.4 x 10-6m?st
and white= 1.4 x 10-%m2sL; (b) time averaged zonal current'{; and (c) meanej) and fluctuating &) kinetic energy spectra.

are detailed in [3]. All simulations are driven toward a mean
stategim, that is purely zonaldly, are zero unless= 0) and
corresponds to a large-scale easterly current in the nitddas

of the southern hemisphere, mimicking thec. The simula-
tions are driven toward this state by a relaxation parameter
which form= 0 andn < 15 has a relaxation time (k) of
11.6 days, andk,, = 0 for all remaining wavenumber pairs. The

bare eddy viscosityg)I (m,n), is necessary as theNs does not

resolve all of the scales of motion. We represe(lﬁ(m n) in

its general anisotropic matrix form (dependentreandn) but

in our simulations it is isotropic (dependent only shwhere
vl (mn) = vl (n) = 8 vl/(T) [n/T)P~2, andy; is the Kro-
necker delta function, ensuring the off-diagonal elememes
zero. Here)(')' (T) is the value of the diagonal elements at trun-

cation and the exponepﬂ) determines the steepness»éi‘(n).

DNS flow fields and spectra

DNs of a QG ocean is undertaken with = 2.5 x 10-19m2,
corresponding to a Rossby radius f = 1/,/2F = 45km.
The nondimensional Rossby wavenumbekgs= a/rr = 142,
which is consistent with the simulations of [11]. The foliog
DNS has truncation wavenumber ©f= 504, which is equiva-
lent to 1536x 768 grid points (in longitudex latitude), or a grid
point every 0.234 degrees. The time step size usAt+s600s,
and the statistics are accumulated over a period of 6 years. R
call DNsin this context refers to a high resolution reference sim-
ulation, not one that necessarily explicitly resolves adlles of
motion. Strictly speaking what is referred to a®®s in the
present paper is a high resolution referenes.

A snapshot of the level 1 instantaneous streamfunction field
(1) minus the zonal component is shown in Fig. 1(a), which
illustrates that the dominant structures are located imtluketo

high latitudes of the southern hemisphere, consistent thith
Acc. The corresponding time averaged zonal curreh} {s
shown as a function of latitude in Fig. 1(b). The maximum ve-
locity of the current depths of 200m and 600m, ar@.6ms?
and ~ 0.3ms! respectively; consistent with measurements of
theacc [8].

The kinetic energy spectra;() is decomposed into meag;j
and transientdj) energies. Figure 1(c) illustrates that the level 1
energy is greater than level 2 at all wavenumbers. The en-
ergy containing scales wavenumber ~ 70 is defined as the
wavenumber at which self similar inertial range begins, isnd
labelled on then axis of 1(c) along with the Rossby wavenum-
berkgr. The enstrophy fluxi(;) is the rate at which enstrophy
(vorticity squared) is transferred from one wavenumbetto t
next. On each levej within the inertial rangej is constant,

with N1 = 1.88x 101653 andn, = 1.36 x 10 1653, The eddy

viscosity on levelj is proportional tcn]-l/ 3 [6].

Stochastic modelling of subgrid scales

The stochastic modelling approach of [3] is used to parame-
terise the subgrid interactions. The resolution oEs is lower
than the associatedNs, and confined to the resolved scale
wavenumber seR = C(Tr), whereTg is the LES truncation
wavenumber such th&irk < T. The subgrid wavenumber set
is defined aS= T —R. To facilitate a discussion on the flow
decomposition, we lefj = (gt,,,03,,)T for a given wavenum-
ber pair. In this vector notatiog(t) = qR(t) 4+ q(t), where

gt is the tendency (time derivative) @f. The tendency of
the resolved scales q,R where all triadic interactions involve
wavenumbers less thak. The remaining subgrid tendenqﬁ
has at least one wavenumber greater thawhich is involved

in the triadic interactionsqtS is further decomposed such that

ge(t) = T+G2(t), wheref = g is the time averaged subgrid
tendency, aniitS the fluctuating component. The valued afre
determined from thens, andgg is modelled as follows.

TheG is represented by the stochastic equation

-~

4o(t) = —Da G(t) +f(t) , ®)

whereDy is the subgrid drain dissipation matrixjs the fluctu-
ating component of, andf is a random forcing vector. As the
present simulations have two vertical levelg, is a time inde-
pendent Z 2 matrix, and is a time dependent 2 element col-
umn vector. TheDyg matrix is determined by post-multiplying
both sides of (3) bﬁT(to), integrating over the turbulent decor-
relation periodt, ensemble averaging to remove the contribu-
tion of f, and rearranging to produce

o= ([ o ) </ttoﬂa<o)a‘f(to>do>1' @

0 0

where T denotes the Hermitian conjugate for vectors and ma-
trices. The angled brackets denote ensemble averaginky, wit
each ensemble member determined by shiftinéprward by

one time step. The turbulence decorrelation timé chosen
sufficiently large to capture the turbulent memory effects.

The model forf is determined by calculating the matrix, =
Fo+Fp', whereF,, = (f(t) G(t)). Post-multiplying both sides
of (3) byaT(to), and adding the conjugate transpose of (3) pre-
multiplied byq(tp) yields the Lyapunov equation

(@oa'n)+(qoan) -
,Dd<a(t)aT(t)>7<Q(t)a‘r(t)>DdT v, )
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Figure 2: Drain eddy viscosity: (a) anisotropic coefficieﬁE[Dél(m, n)] for Tr = 252; (b) isotropic coefficientRe[Dél(n)] for
Tr = 63,100,126 150,200 252,300; and (c) maximum valuez%,ét (Tr) and power exponents;.

Given thatDyq is known, ¥, can now be calculated. At this
point the formulation is general, arfds coloured noise. For
the implementation of the stochastic subgrid paramet@isa
however, it is sufficient to assume tHatan be represented as
the white noise proces(t) f'(t')) = 7 p d(t —t').

The subgrid model in (3) represents the subgrid interastion
in a stochastic manner. One can also do so deterministically
where the subgrid tendency is modelled accordin@ft(j) =
—Dnet G(t), with the net dissipatio®Dne = Dg + Dy, and the

backscatter dissipatidBy, = —Fp (G(t) (1))

The equation governing the&sis the same as thens equation

in (1), with (Qts)rjm added to the right-hand-side, and solved
over the wavenumber s& instead ofT. The most general
form is the stochastic anisotropic representation

(®),,

In the anisotropic deterministic forr@,(jjI (m,n) is replaced with

D#et(m n), and fly, is removed. In the isotropic parameteri-
sations the matriceBy, ¥ and Dpe are isotropised. From
this point onwards the subgrid coefficients are presented in
eddy viscosity form, where the drain, backscatter and néy ed
viscosities are related to their respective dissipationsyp=
Dd/[n(n+1)], vp = Dp/[n(n+1)], andVnet = Dpet/[N(N+1)].

2 . _
=~ 3 D{(MN)Gm + flnt . (6)
1=1

Subgrid eddy viscosities and scaling laws

TheDNs s truncated back to various valuesTgfto determine
how the eddy viscosities change with resolution. We chgse
to be consistent with it having been derived from a higher res
olution DNs. Firstly we present the anisotropig truncated
back toTg = 252, witht = 288\t = 2 days. The real compo-
nent of the upper diagonafi}(m,n) is illustrated in Fig. 2(a).
At this resolutionvl!(m,n) increases witm, has only a weak
dependence om, and hence is approximately isotropic. The
lower diagonal element3?(m;n) has a similar form, and the
off-diagonal elements are small in comparison. These vhser
tions are also true for the backscatter and net eddy visessit
We also find thawy ~ Vnet/2 &~ —Vp /2. At lower truncation
levels, however, the coefficients become more anisotrepid,
the off-diagonal elements become proportionally more impo
tant.

Self similarity is most clearly illustrated by the isotrept pro-
files. The real component of the upper diagonal isotropised
drain eddy viscositw}l(n) is illustrated in Fig. 2(b) for vari-
ous truncation levels. It is clear that as the resolutiondases

proaches zero. For truncations wih > ke the positive values

of the eddy viscosities are concentrated in thekasvavenum-
bers before truncation. This means that when plotted versus
n/Tr the profiles become steeper as resolution increases.

For the isotropised drain eddy viscosity, the change in rinagn
tude @3 (Tr)) and slope §}) is quantified by least squares fit-
ting thev)! (n) profiles to the function

vil(n) = vl (Tr) [n/TeJP2.

(@)

There are analogous expressions of (7)\i§r(n) andv,j]fa(n).
Note the form ofv}!(n) prescribed in (7) is positive definite.

The values ofv}!(Tr) non-dimensionalised bm;l/skz, are
plotted as diamonds on the left vertical axis in Fig. 2(c)iagfa
Tr/ke. The values of:)(’i are plotted as circles on the right ver-
tical axis in Fig. 2(c). The filled symbols represgnt 1, and
the open symbolg = 2. There are two additional truncations
plotted in in Fig. 2(c) made alr = 400 and 504, determined
from abNswith T = 1008. The data in Fig. 2(c) illustrates that
as Tr increases (more scales resolved), the strendfr(,‘l’R),

decreases and the steepne%sjncreases.

The trend lines in Fig. 2(c) are fitted to data points for which
Tr/ke > 2, as this ensures that these data points have mini-
mal subgrid interactions with the energy containing scalée
functional form of these trend lines are the eddy viscosibl-s

ing laws and are explicitly outlined in [4]. Trend lines aksdst

for the eddy viscosities in baroclinic space. We can also de-
termine the off-diagonal elements from these scaling lasvs a
explicitly outlined in [4].

Performance of LES with subgrid scale parameterisations

We compare kinetic energy spectra at levekj) ©f the DNS,
to e; of variousLES at two truncation level3g = 126 and 252.
Observations made from the comparisonegpfare consistent
with comparisons of the level 2 spect&)

Firstly we testLEss with the raw anisotropic coefficients de-
termined from thebNs. We compare both the stochastic and
deterministicLEs in Fig. 3(a), with each spectra offset for clar-
ity. Whilst the stochastic parameterisation is the fundatale
form [2], for the present flow configuration we find that the de-
terministic variant performs equally as well. The deteristin
and stochastic parameterisations illustrate excellergesment
for both LES truncationsTgr = 126 and 252.

Next we test the isotropic parameterisations using the @w c
efficients. In Fig. 3(b) we compare tlEns to the stochastic

the maximum value decreases, and the most negative value ap- and deterministic isotropices, both of which achieve excel-
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Figure 3: Spectra; (DNS - dashed,LES - solid) using parameterisations: (a) anisotropic deteistic (AD), stochastic 4S); (b)
isotropic deterministici0), stochasticiE); (c) scaling laws deterministie 0), stochastic(s). Labelled withTr and parameterisation.

lent agreement afir = 126 and 252.

Finally we testLESs adopting isotropic subgrid parameterisa-
tions with coefficients defined by (7) and the scaling laws il-
lustrated in Fig. 2(b). The spectra are compared in Fig.. 3(c)
Excellent agreement is achieved by both the determinisiic a
stochastic variants for truncations madé&gat= 252. At this res-

olution the baroclinic instability is explicitly resolvedr > kg),

andvéj(n) is positive definite (see Fig. 2(b)). By construction,
the form representing these profiles in (7) can only be p@&siti
which is adequate fofr = 252. At theTr = 126 truncation

level, however, the baroclinic instability is not complgtee-
solved {Tr < kg), v(’j’(n) is in fact negative for certain (see

Fig. 2(b)), and consequently the form in (7) does not repriese
these negative values. This is why the kinetic energy spéstr
underestimated for both variantsTgt= 126. At this resolution
some amount of negative eddy viscosity is required to furthe

excite theLES in order to replicate thens spectra.

Concluding remarks

Deterministic and stochastic subgrid parameterisaticmg h

been developed for oceanic flows representative ofathe.

The stochastic variant consists of a drain eddy viscositgd, a

a backscatter noise term. The deterministic version ismee
solely by the net eddy viscosity, which represents the net ef
fect of the drain and backscatter. These wavenumber depen-

dent eddy viscosity matrices have been derived self-ctamlyg
from the statistics of higher resolutians.

We have undertaken variougss with subgrid coefficients de-
termined from theDNS. The anisotropic deterministic and

stochastic parameterisations reproducetike spectra aigr =
126 and 252. Both the deterministic and stochastic isatnogi

rameterisations using raw coefficients also reproducephbe-s

tra within the inertial range. Isotropic variants with cogénts

determined by the scaling laws also adequately reprodue th

kinetic energy spectra of thens.

To further improve the applicability of these scaling lawst-

rent research is investigating how they may change withRoss
radius. In the future we also hope to further verify thesd-sca
ing laws by applying the present subgrid modelling apprdach
more complex mutli-level primitive equation models incorp

rating more complete dynamics and physics.
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